
Road Segmentation by Exploiting Road Vector Data

Jiangye Yuan and Anil M. Cheriyadat

Computational Sciences and Engineering Division

Oak Ridge National Laboratory

Presenter: Jiangye Yuan

Introduction

Proposed method

- Factorization-based segmentation
- Road segmentation with road vectors

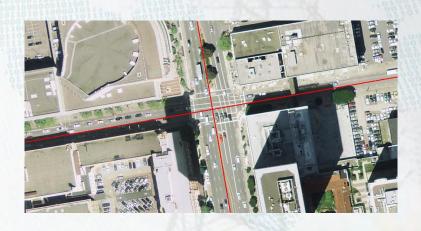
Experiments

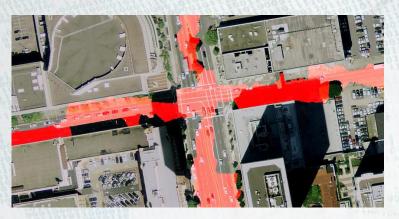
Extended applications

- Road segmentation using GPS traces
- Road segmentation in street view images

Conclusions

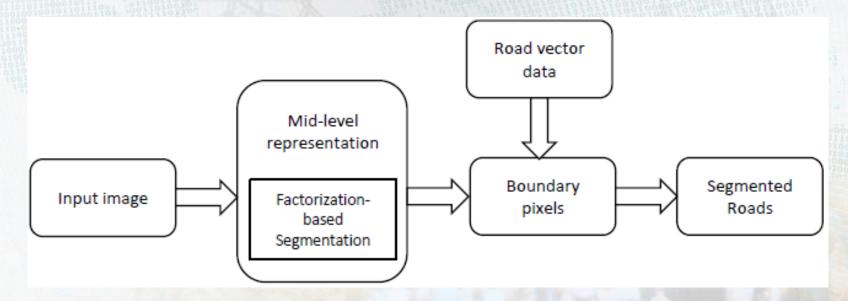
Introduction


- Segmenting road regions from high resolution aerial images is important (building and update GIS, providing contextual information for image analysis) yet challenging (large variations on road surfaces).
- Although a large number of methods for road extraction have been proposed, reliable performance is still difficult to achieve, especially for high resolution images containing complex scenes.
- Road vector data are widely available from various online cartographic resources (Google Map, OpenStreetMap, etc.).
- Vector data can provide supervision for segmenting road regions.


Straightforward approach

Geographic Information Science and Technology

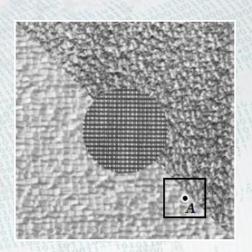
 How to utilize vector data for supervised road segmentation is not a trivial problem.



Proposed method

- The proposed method relies on a basic but distinctive feature of roads – parallel road edges. The distribution of the boundary locations with respect to road vectors are exploited to identify road edges.
- System overview

Local spectral histograms


• Given an image window W and a bank of filters $F^{(\alpha)}$, $\alpha = 1, ..., K$, a spectral histogram consists of histograms of filter responses

$$H_{W} = \frac{1}{|\mathbf{W}|} (H_{W}^{(1)}, H_{W}^{(2)}, ..., H_{W}^{(K)})$$

- $H_{\mathrm{W}}^{(\alpha)}$ is the histogram of a filter response
- A local spectral histogram is computed from a square window centered at a pixel. The size of the window is called integration scale.
- Spectral histograms can characterize both texture and nontexture regions.

- Assume that spectral histograms within homogeneous regions are approximately constant.
- The feature of a near-boundary pixel location can be approximated by a linear combination of the representative features weighted by the corresponding area coverage.

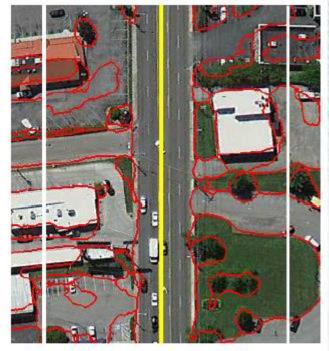
 Each feature in an image can be regarded as a linear combination of all representative features weighted by the fractional area coverage in the local window.

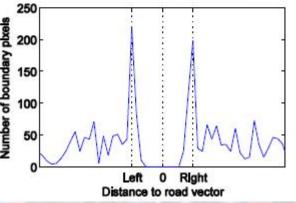
An image model to associate each feature with the representative features

$$Y = Z\beta + \varepsilon$$

- $\mathbf{Y} = [Y_1 Y_2 \dots Y_m]$ where Y_i is the feature vector of pixel i
- $\mathbf{Z} = [\mathbf{Z}_1 \ \mathbf{Z}_2 \ \dots \ \mathbf{Z}_r]$ where \mathbf{Z}_i is one representative feature
- $\beta = [\beta_1 \ \beta_2 \ \ \beta_m]$ where β_i is the weight vector of pixel i
- ε is a matrix representing noise
- Segmentation is formulated as a factorization problem.
- When Z is given, segmentation can be obtained by least squares estimation $\hat{\boldsymbol{\beta}} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{Y}$

Factorization-Based Segmentation

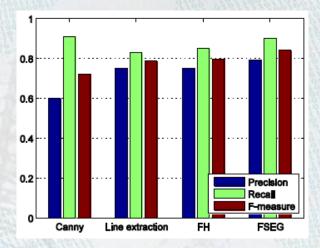



- Apply singular value decomposition (SVD) to obtain factored matrices with low rank.
- The number of segment equal to the effective rank of the feature matrix, which can be estimated from the singular values.
- SVD gives the subspace all features reside in, which greatly reduces feature dimensions and leads to the estimation of representative features.
- A nonnegative matrix factorization technique is used to ensure nonnegativity constraints.

Finding Road Edges

- In aerial images, road edges tend to have more visible boundaries parallel to road vectors.
- Compute the distance from each boundary pixels in a search space to the line segment in vector data, and assign all the distances to bins of a histogram.
- A road edge is a straight line at the distance corresponding to the highest peak in the histogram.

Two 5000 × 5000 aerial images covering complex urban scenes.
 Vector data are from OpenStreetMap.

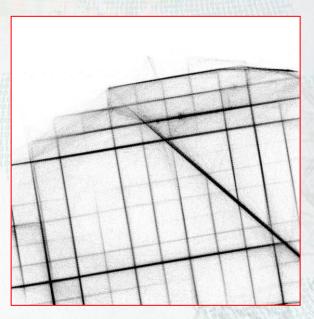


Comparison

 Choose three different methods to produce boundaries, including Canny edge detector, straight line extraction, and the Felz-Hutt graph-based region merging algorithm.

 The factorization-based algorithm achieves the best Fmeasure thanks to the effective use of texture information that helps identify the boundaries with high saliency.

Road segmentation using GPS traces


- GPS receivers are widely deployed in everyday vehicles.
- To reduce manual work, we can replace road vector data with **GPS** traces of vehicles.
- **Segment road using GPS traces**
 - Filter out noisy GPS traces based on image information.
 - Extract and prune the medial axis to form the road network.
 - Use the generated road network as the vector data to segment road regions

Experimental results

Geographic Information Science and Technology

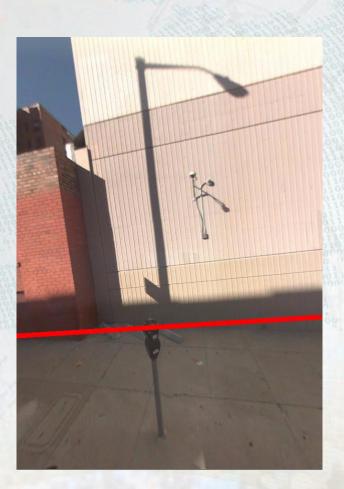
GPS data are from over 500 taxi cabs in one month.

GPS traces

Road network

Road region

Road segmentation in street view


- Google streetview images are collected by a moving vehicle.
 The location information and camera parameters are available.
- The road edges identified in aerial images can be converted into edges in streetview images, which leads to segmenting road regions in streetview images.

Experimental results

Front

Right

Conclusions

- We present a simply and effective method that segments road regions with assistance of road vector data.
- The proposed method works reliably on real world data containing complex road structures.
- With additional data sources, the method can be further extended to produce useful results.