Road Segmentation in Aerial Images by Exploiting
Road Vector Data

Jiangye Yuan
Computational Sciences and Engineering Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
Email: yuanj@ornl.gov

Abstract—Segmenting road regions from high resolution aerial
images is an important yet challenging task due to large variations
on road surfaces. This paper presents a simple and effective
method that accurately segments road regions with weak super-
vision provided by road vector data, which is publicly available.
The method is based on the observation that in aerial images
road edges tend to have more visible boundaries parallel to
road vectors. A factorization-based segmentation algorithm is
applied to an image, which accurately localizes boundaries for
both texture and nontexture regions. We analyze the spatial
distribution of boundary pixels with respect to the road vector,
and identify the road edge that separates roads from adjacent
areas based on the distribution peaks. The proposed method
achieves on average 90% recall and 79% precision on large aerial
images covering various types of roads.

I. INTRODUCTION

This paper presents a new method to segment road regions
in aerial images. The segmentation is supervised by publicly
available road vector data. As shown in Fig. 1, the proposed
method accurately delineates the road regions in a complex
aerial scene.

With the advances made in remote sensing data acqui-
sition, large volumes of high-resolution aerial images have
been collected, which pose a significant challenge to image
analysis and understanding. One important analysis task is to
segment road regions from images, which has a wide range of
valuable applications. The resulting road map can be used for
establishment and update of geographic information systems.
Knowledge of road regions also provides contextual informa-
tion that benefits many image analysis tasks. It has been shown
that incorporating the information of road extent gives a clear
improvement on detecting vehicles [8] and capturing spatial
relations among objects [15].

However, it is challenging to accurately identify road
regions from high resolution images. In images with sub-meter
resolutions, road region appearances vary vastly. In addition to
the pavement materials and markings that cause the appearance
variations, road regions can be largely covered by vehicles,
vegetations, and shadows, especially in urban and suburban
scenes. A multitude of methods for extracting road regions
have been proposed. Most of those methods assume that road
appearances can be modeled in terms of certain spectral,
spatial, and geometric properties that differentiate road regions
from other regions in images [2], [5]. The road model can
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Fig. 1. An example of our road segmentation results. (a) An aerial image
with road vectors overlaid. (b) The segmented road region.

be predefined or learned from labeled data. However, this
assumption can be substantially violated in complex scenes,
and thus those methods have difficulty achieving a reliable
performance on large real-world datasets [11].

While one purpose of segmenting road regions from remote
sensing images is to generate road vector data [12], the impor-
tance of this purpose is decreasing as road vector data are now
widely available from various online cartographic resources
such as Google Maps' and US Census TIGER/Line files>.
Moreover, with the emergence of Volunteered Geographic
Information (VGI), which allows common users to create and
edit geographic data, the availability of road vector data is
growing rapidly. For example, one of the most extensive VGI

Thttp://maps.google.com/
Zhttp://www.census.gov/geo/maps-data/data/tiger.html



Fig. 2. An example of road vector data from OSM. Road vectors are overlaid
on the aerial image. Squares are the end points of line segments. The white
circle marks a line segment that largely deviates from the road centerline

sources is OpenStreetMap (OSM), which has millions of con-
tributors [7]. Since the vector data can be considered as labeled
data, where the pixels corresponding to road vectors are known
to be road, they can provide supervision for segmenting road
regions. However, how to utilize vector data for supervised
road segmentation is not a trivial problem.

In vector data, a road vector specifies the end points of
line segments passing through road centerlines. Connected line
segments forms road networks. Fig. 2 shows an example of
OSM road vector data overlaid on the aerial image. Due to
various types of errors, the vectors often deviate from the
actual road centerlines in images, which can be observed in
the figure. Given the noise in the data together with varying
road width, setting a predefined width along vectors cannot
correctly identify road regions. Another possible solution is to
select pixels that have similar features to labeled road pixels.
A straightforward approach is to segment an image and select
the segments that overlap with vector data. Fig. 3 presents the
results of applying such a approach to the image in Fig. 1(a),
where we adopt a leading superpixel segmentation algorithm
[9] to generate over-segmentation with each segment repre-
senting a compact and homogeneous region. Two results are
shown, obtained from segmentations with different numbers of
superpixels. We can see that the results either miss large road
regions or contains many non-road regions due to the highly
varying appearances.

Instead of constructing or learning a road model, the
method proposed in this paper relies on a very basic but
distinctive feature of roads — parallel road edges. The distribu-
tion of the boundary locations with respect to road vectors
are exploited to identify road edges. We adopt a recently
proposed factorization-based segmentation algorithm [18] to
provide segment boundaries that account for both texture and
nontexture regions. We find that this seemingly oversimplified
method produces highly accurate results for large images
containing complex road structures.

Fig. 3. Illustration of a straightforward approach for supervised road
segmentation. The road regions are marked in red. The top image shows the
result from a 200-superpixel segmentation, the bottom from a 100-superpixel
segmentation

II. PREVIOUS WORK

Several attempts have been made in using road map data
to assist road extraction from remote sensing images. Mnih
and Hinton [14] generate labeled datasets from road vector
data and satellite images, which are used to train a neural
network to detect road pixels. Their approach can detect roads
with moderate occlusions thanks to the availability of large
training datasets and the learning ability of neural networks.
However, as their results show, the method fails when the
occlusions are large. The work presented in [17] has a problem
formulation similar to our work. Instead of road vector data,
screen shots of Google Maps are used in that work for
supervised road region segmentation. A superpixel image is
first generated. Based on the superpixels that overlap with the
roads in the map, a probabilistic classifier is learned, which
is combined with Markov Random Field (MRF) to identify
road regions. Because this method models road appearances
from narrow areas in the roads, it can misclassify those non-
road regions with similar appearances. In addition, this method
is computationally expensive due to parameter estimation in
MRE.

It is a common practice for road extraction methods to
start from contour detection or segmentation outputs [13], [16],
[19]. Using the detected boundaries or segments as basic units
offers several benefits, including reduced spectral variability
and more spatial and contextual information. However, ex-
traction results can be largely affected by the quality of the
results from this step, which is often difficult to ensure for
large images. Besides, more accurate results require advanced
algorithms, which tend to have a high computational cost.
In this paper, we employ a factorization-based segmentation
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Fig. 4. Flow diagram of the proposed method.

algorithm [18], which can efficiently produce segments for
both texture and nontexture regions with well-localized bound-
aries. Moreover, in contrast to those methods that directly build
on the resulting boundaries or segments, we find road edges
based on the spatial distribution of detected boundaries, which
reduces the dependence on segmentation accuracy.

III. SUPERVISED ROAD SEGMENTATION

This section presents the proposed method for road seg-
mentation, which is summarized in Fig. 4. The segmentation
algorithm is first applied to an image to generate a mid-level
representation that gives object boundaries. Given road vector
data, the relative locations of boundary pixels are examined to
determine two road edges that define road regions.

A. Boundary detection

The first step in our method is to find boundaries in
the images that should include most boundaries separating
roads and adjacent regions and but contain as few as possible
the noisy ones that appear inside meaningful regions. We
utilize a factorization-based segmentation algorithm [18]. This
algorithm uses local spectral histograms [10] as features. At
each pixel location, the feature is a concatenated histogram of
different filter responses within a local window. The size of
the window is referred to as integration scale. Each feature
can be regarded as a linear combination of several features
representative of different regions, and combination weights
indicate the region ownership of the corresponding pixel.
Consequently, a feature matrix Y can be expressed as a
product of two matrices,

Y =78 +e. (1)

Here each column in Y is the feature at each pixel location,
each column of Z is a representative feature for a region,
and each column of 3 is the combination weights at each
pixel location. € is the noise. Segment labels are given by 3,
where the largest weight in each column indicates the region
the corresponding pixel belongs to.

In such a formulation, the segmentation algorithm seeks to
factor Y. By applying singular value decomposition to Y, the
number of segments can be estimated, and a subspace can be
constructed that contains all features. Clustering features in the
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subspace produces initial representative features, which are fed
into a nonnegative matrix factorization algorithm [1] to obtain
the factored matrices. Fig. 5 shows the result of applying this
algorithm to a 1000 x 1000 aerial image. We can see that the
major objects like buildings and roads are segmented with well
localized boundaries. It takes 10 seconds to segment this image
on a 3.2-GHz Intel processor.

B. Road segmentation supervised by road vectors

The road regions are confined by two road edges parallel to
road centerlines. Therefore, given the vector data, segmenting
road regions can be solved by determining two parallel road
edges. Since in most cases road vectors do not lie on the
exact road centerlines in images, two road edges need to be
determined separately.

From an aerial view, we can observe parallel road edges
formed by the contrast between roads and other neighbor-
ing objects. This is also one of the most important cues
a human operator would use to delineate roads. Based on
this observation, we define road edges as lines parallel to
road vectors and aligned with most segment boundaries. This
definition, overlooking many other cues that could be exploited
for road extraction though, leads to an effective approach for
segmenting road regions.

On each side of a road vector, we define a search space,
which is a rectangular area that is sufficiently large to cover
potential road regions. We compute the distance from each
boundary pixel in the search space to the line segment in vector
data, and construct a histogram by assigning all the distances
to equal-width bins. The bin width is chosen based on image
resolution. The road edge, a straight line, is at the distance
corresponding to the highest peak in the histogram. Fig. 6
shows an example of constructing a histogram of boundary
pixels. The boundaries in the image are produced by the
segmentation algorithm. The yellow line represents the road
vector. We can see that the histogram peak on each side
reveals the location of a road edge. Note that this method
does not require a highly accurate boundary detection with
each meaningful region delineated. Because it is based on
the distribution of boundary pixels, the result is not sensitive
to boundary detection errors, as long as sufficient major
boundaries are identified.



Fig. 5. Example of segmentation results. (a) An aerial image of size 1000 x 1000 pixels. (2) The segmentation result with each segment labeled by a random

color.
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Fig. 6. Illustration of computing the histogram of boundary pixels. The yellow
line shows the road vector. The boundaries marked in red are generated by
the factorization-based algorithm. The white lines indicate the search space
on each side of the road.

For each line segment, the detected road edges have the
same length, which give a rectangular road region. On both
ends of the road, we include the semicircular region within
the diameter equal to the rectangle width, in order to smoothly
connect roads. In some cases, aggregated noisy boundaries can
result in a histogram peak at a place that does not correspond
to actual road edges. To address this problem, we compute the
orientation of each boundary pixel and exclude the boundary
pixels with orientations significantly different from the vector
orientation. The orientation of a boundary pixel is determined
by the direction most neighboring pixels reside in.

IV. EXPERIMENTS

We test our method on two 5000 x 5000 geo-referenced
color images covering different cities with a spatial resolution
of 0.3 m. Each image contains various types of roads with
highly diverse appearances. The corresponding road vector
data are acquired from OSM, which are stored as shapefiles.

For all experiments, we use a fixed set of parameter values.
In the segmentation algorithm, we apply two Laplacian of
Gaussian filters to the red band and use the filter responses
together with three color bands to compute local spectral
histograms. The integration scale is set to 21 x 21. The
bin width for computing histograms of boundary pixels is
set to 5 pixels, corresponding to 1.5 meters on the ground.
The search space needs to be sufficiently large. However, as
the road width varies in a wide range, a large search space
that accommodates multi-lane highways may include more
than one road in residential areas, which causes inaccurate
detection. To alleviate this problem, we use two sizes of search
spaces for different road classes. In the OSM data, each road
has a classification tag. The search space is 30 meters from
road vectors for the classes of ‘motorway’, ‘truck’, ‘primary’,
‘secondary’, and ‘tertiary’, and 15 meters for the other classes.
Note that a search space is defined on each side of the road
vector.



Fig. 7. Road segmentation results. The segmented roads are marked in red in the original images. The areas in white rectangles will be displayed in a larger
view.
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Fig. 8.

Image patches corresponding to the rectangular areas in Fig. 7. The left column presents the image patches from the top image, and the right column

from the bottom image. The size of each image is 400 x 600. This figure is best viewed in color.

Fig. 7 show the results of applying our method to two
images, where the road regions are shown in red and overlaid
on the original images. As we can see, the images cover
complex scenes that are very challenging for road extraction.
The resulting road regions are highly accurate from a visual
inspection. We implement the method using MATLAB. The
average running time for processing an image is 12 minutes.

To better show the quality of results, we display six image
patches from the images in Fig. 7, where the correspond-
ing areas are indicated by white rectangles. These examples
demonstrate that our method is capable of segmenting roads
with heavily shaded areas (Fig. 8(a) and (d)), dense vehicles
(Fig. 8(a)), large vegetation coverage (Fig. 8(b) and (e)), and
complex road markings (Fig. 8(f)). In Fig. 8(c), the roads are
bordered by a large parking lot, which is a difficult situation
for segmenting road regions because of similar spectral char-
acteristics. In our result, two regions are accurately separated
based on the boundary cue in the surroundings. In Fig. 8(e),
builds and roads are highly occluded by trees. This scene is
very difficult for segmentation algorithms to obtain meaningful
results. Fig. 9 shows the search space of the horizontal road
in the middle of the image. Although the boundaries from
segmentation are rather noisy, the peaks in the histogram
clearly indicate the locations of road edges.

To quantitatively evaluate the results, we generate ground
truth by manually labeling road regions on the images. Since
identifying road regions is a typical binary classification task,
we use the precision and recall measures. Precision is the
percentage of the true positive among the road regions detected
by the algorithm, and recall the percentage of the true positives
in the ground truth. The average precision and recall for the
results in Fig. 7 are 0.79 and 0.90, respectively.

There are some cases where the method does not perform
well. Some examples are illustrated in Fig. 10. The misplaced
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Fig. 9. Boundary pixel histogram of the middle road in Fig. 8(e).

road edges are mostly caused by elongated buildings or shad-
ows that happen to show long boundaries that parallel to roads.
Such misplacements cannot be easily corrected based on low-
level information. Fortunately, these situations do not occur
very often in an image.

Because our method analyzes the segment boundaries
to extract roads, a very large number of contour detection
and segmentation methods can be used to provide boundary
pixels. For comparison purpose, we investigate three methods
detecting boundaries at different levels, including Canny edge
detector [4], straight line extraction [3], and the graph-based
region merging algorithm (Felz-Hutt) [6].

Canny edge detector is a classic approach to produce
boundaries. Due to its simplicity and efficiency, it is still
widely used for boundary detection. The results based on
Canny detector can be considered as a baseline.

In the straight line extraction method, spatially contiguous
pixels with the same quantized orientations form line support-
ing regions. The orientations are quantized with different bin



Fig. 10. Examples where the proposed method does not perform well due to multiple parallel edges.

centers to reduce the chance of incorrectly partitioning regions.
Different line region partitions are integrated to extract straight
lines by using a pixel voting scheme. Since road edges are
supposed to be straight, this method is expected to generate
candidate boundary pixels with less noise.

Based on the view that a segment is a connected component
in a graph, the Felz-Hutt algorithm defines the differences
within a component (internal difference) and between two
components (difference between), and iteratively merges com-
ponents whose difference between is smaller than their internal
differences. This algorithm is very efficient and has shown
promising performance.

Fig. 11 shows the average precision and recall of the results
from each method. The F-measure is also presented as a
summary score, which is the harmonic mean of precision and
recall. Canny detector gives the highest recall but with a very
low precision. It often fails to detect low contrast boundaries
on actual road edges and thus results in placing road edges
at some off-road objects with high-gradient edges. In spite of
a gradient-based method, straight line extraction gives much
improved results because it finds straight lines on road edges
and at the same time eliminates many noisy boundaries that
can distort the histogram of boundary pixels. The Felz-Hutt
algorithm attains a slightly higher F-measure. It removes more
noise boundaries but still generates boundaries of aligned
vehicles or certain road markings that can negatively affect the
final result. The factorization-based algorithm achieves the best
F-measure thanks to the effective use of texture information
that helps identify the boundaries with high saliency.

V. CONCLUSIONS

We have presented a new method of supervised road
segmentation. The supervision comes from road vector data,
which are easily accessible. Despite the simple strategy, the
method makes effective use of the vector data and accurately
segments road regions. The method works reliably on two large
datasets of challenging aerial scenes.

The current method requires a very weak supervision, lines
on the road regions. In addition to road vector data, other forms
of road position data can be employed. One candidate is the
GPS traces from vehicles. Coupling our methods with such
GPS data results in a system that can generate road maps
in real-time without involving any manual work. However,
to achieve this goal, we need to address the issues such as
generating lines from raw GPS data and the high level of GPS
noise occurring in urban areas. We are currently investigating
these issues.
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Fig. 11. A comparison of road segmentation results. FH stands for the Felz-
Hutt algorithm, and FSEG the factorization-based algorithm.

ACKNOWLEDGMENTS

This work was supported in part by U.S. Department of
Energy/National Nuclear Security Administration under Grant
DOE-NNSA/NA-22. This manuscript has been authored by
employees of UT-Battelle, LLC, under contract DE-ACO05-
000R22725 with the U.S. Department of Energy. Accordingly,
the United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for United States Government purposes.

REFERENCES

[1] R. Albright, J. Cox, D. Duling, A. Langyville, and C. Meyer. Algorithms,
initializations, and convergence for the nonnegative matrix factorization.
NCSU Technical Report Math 81706, 2006.

[2] A. Baumgartner, C. Steger, H. Mayer, W. Eckstein, and E. Heinrich.
Automatic road extraction based on multi-scale, grouping, and context.
Photogrammetric Engineering & Remote Sensing, 65:777-785, 1999.

[3] J. B. Bums, A. R. Hanson, and E. M. Riseman. Extracting straight
lines. PAMI, 8:425-455, 1986.

[4] J. Canny. A computational approach to edge detection. PAMI, 8:679—
698, 1986.

[S] P. Doucette, P. Agouris, and A. Stefanidis. Automated road extraction
from high resolution multispectral imagery. Photogrammetric Engineer-
ing & Remote Sensing, 70:1405-1416, 2004.

[6] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image
segmentation. IJCV, 59:167-181, 2004.

[7]1 M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7:12—18, 2008.



[8]
[9]

(10]
[11]

[12]
[13]

[14]
[15]
[16]

(17]

[18]
[19]

G. Heitz and D. Koller. Learning spatial context: using stuff to find
things. In ECCV, 2008.

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson,
, and K. Siddiqi. Turbopixels: Fast superpixels using geometric flows.
PAMI, 7:12-18, 2008.

X. Liu and D. L. Wang. A spectral histogram model for texton modeling
and texture discrimination. Vision Research, 42:2617-2637, 2002.

H. Mayer. Object extraction in photogrammetric computer vision.
ISPRS Journal of Photogrammetry and Remote Sensing, 63:213-222,
2008.

J. B. Mena. State of the art on automatic road extraction for GIS update:
a novel classification. Pattern Recognition Letters, 24:3037-3058, 2003.
J. B. Mena and J. A. Malpica. An automatic method for road extraction
in rural and semi-urban areas starting from high resolution satellite
imagery. Pattern Recognition Letters, 26:1201-1220, 2005.

V. Mnih and G. Hinton. Learning to detect roads in high-resolution
aerial images. In ECCV, 2010.

J. Porway, K. Wang, and S. C. Zhu. A hierarchical and contextual
model for aerial image understanding. In CVPR, 2008.

C. Poullis and S. You. Delineation and geometric modeling of road
networks. ISPRS Journal of Photogrammetry and Remote Sensing,
65:165-181, 2010.

Y.-W. Seo, C. Urmson, and D. Wettergreen. Exploiting publicly
available cartographic resources for aerial image analysis. In Proceed-
ings of the 20th International Conference on Advances in Geographic
Information Systems, 2010.

J. Yuan and D. L. Wang. Factorization-based texture segmentation.
Technical Report OSU-CISRC-1/13-TRO1, 2013.

J. Yuan, D. L. Wang, B. Wu, L. Yan, and R. Li. LEGION-based
automatic road extraction from satellite imagery. IEEE Transctions on
Geoscience and Remote Sensing, 49:4528-4538, 2011.



